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Abstract

A new code is presented here, named Gyrokinetic SEmi-LAgragian (GYSELA) code, which solves 4D drift-kinetic
equations for ion temperature gradient driven turbulence in a cylinder (r,0,z). The code validation is performed with
the slab ITG mode that only depends on the parallel velocity. This code uses a semi-Lagrangian numerical scheme, which
exhibits good properties of energy conservation in non-linear regime as well as an accurate description of fine spatial scales.
The code has been validated in the linear and non-linear regimes. The GYSELA code is found to be stable over long
simulation times (more than 20 times the linear growth rate of the most unstable mode), including for cases with a high
resolution mesh (ér ~ 0.1 Larmor radius, 6z ~ 10 Larmor radius).
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Turbulent transport is a key issue for controlled thermonuclear fusion based on magnetic confinement. The
thermal confinement of a magnetized fusion plasma is essentially determined by turbulent heat conduction
across the equilibrium magnetic field. In practice, the study of plasma turbulence requires to solve the Maxwell
equations coupled to the calculation of the plasma response to the perturbed electromagnetic field. This
response can be computed by using either a fluid or a kinetic description of the plasma. Solving 3D fluid equa-
tions is certainly the most convenient and fastest way to solve the problem given the set of well established
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numerical techniques and the wealth of results obtained in the domain of fluid turbulence. However, it is
known that the stability threshold given by fluid equations is lower than the actual (kinetic) value [1]. Also
a fluid description usually overestimates turbulent fluxes [1]. This discrepancy comes partly from the resonant
interactions between waves and particles (Landau resonances), which cannot be fully described with fluid
equations. Also, the behavior of zonal flows, which play an important role in regulating turbulence, is not
properly described by fluid equations in a weakly collisional regime. A first solution to overcome this difficulty
is to introduce improved closure schemes in the set of fluid equations in order to recover the actual stability
threshold and turbulent flux [2-4]. Comparing fluid and kinetic simulations provides a test of this closure
scheme. In fact this task has proved to be much more difficult than expected [1]. The second solution is to solve
the kinetic problem in order to compute accurately the turbulence in nearly collisionless plasmas. This is a
formidable challenge. In principle, one has to solve a 6D kinetic equation (3D in space and 3D in velocity)
to determine a distribution function, which yields current and charge densities once integrated over the veloc-
ity space. For strongly magnetized plasmas, averaging the kinetic equation over the cyclotron motion, which is
faster than turbulent motion, reduces the dimensionality. The new kinetic equation, called “gyrokinetic”,
describes the distribution function in the 5D phase space (3D in space and 2D in velocity, namely vj and v,)
associated to the guiding center motion. In this case, the adiabatic invariant, u = mv? /2B the action
variable associated to the gyrophase, acts as a parameter. This 5D gyrokinetic problem is still very demanding
in terms of numerics.

Two methods have been used up to now to investigate turbulence in the gyrokinetic regime. The first
method is based on a Lagrangian approach. Particles in cell (PIC) codes, which are the most widely used
in this category [5—-11], consists in describing the plasma with a finite number of macro-particles. The trajec-
tories of these particles are the characteristics of the Vlasov equation, whereas self-consistent fields are com-
puted by gathering the charge and current densities of the particles on a mesh of the physical space [12].
Although this method allows one to obtain satisfying results with a small number of particles, it is well
known that the reduction of the numerical noise inherent to the particle method requires a large number
of particles. In particular the slow convergence with increasing number of particles is inherent to the PIC
method, which is based on a statistical sampling of phase space. Improvements to the method have been
brought by reinitializing the distribution of marker particles so as to concentrate them in regions of phase
space where the perturbed part of the distribution function becomes large in absolute value [13-15]. Despite
this significant improvement, known under the concept of importance sampling, there appears an upper
bound in the simulation time, both due to the fact that ||0f]] becomes of equal or even larger size than ||f]|
and due to the filamentation in velocity space which is a general property of the solution of the collisionless
Vlasov equation hence effecting all numerical methods. The second method is Eulerian [16-22]. It consists in
discretizing the Vlasov equation on a mesh of the phase space that remains fixed in time. The flux balance
method (FBM) [23] uses a finite volume method for computing the average of the Vlasov equation on each
cell on a fixed grid. More recently, the positive flux conservative (PFC) method [24] have been improved by
introducing a slope limiter for the reconstruction of the distribution function to preserve the positivity and
the mass. However, the trade-off for these improved conservation properties is a significant increase in the
numerical dissipation.

The aim of this work is to use an intermediate method based on a semi-Lagrangian (SL) method [25]. This
method has already been applied to calculate a turbulence driven by passing ions in 2D (1D in space, 1D in
velocity) [26] and trapped ions in 3D (2D in space, 1D in velocity) [27]. In this paper a 4D model (3D in space
and v (with g = 0)) for slab-ITG turbulence is used as a test bed. The purpose of the SL method is to take
advantage of both the Lagrangian and Eulerian approaches, to have a good description of the phase space,
in particular in regions where the density is low, as well as an enhanced numerical stability. In this approach,
the mesh grid is kept fixed in time in the phase space (Eulerian method) and the Vlasov equation is integrated
along the trajectories (Lagrangian method) using the invariance of the distribution function along the trajec-
tories. Cubic spline interpolations are performed to evaluate the new value of the distribution function on the
grid points. The integration along the trajectories is performed with a time-splitting algorithm, that allows to
split the 4D advection equation into a sequence of 2D and 1D advections. The global numerical scheme is
second order accurate in time by using a symmetrical time-splitting scheme and a leap-frog algorithm. Here,
the full distribution function f is calculated in contrast with PIC codes that only calculate the perturbed
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distribution function 6f = f — f.q (Where f.q corresponds to a reference distribution function, usually Maxwell-
ian). The PIC-df codes have been recently revisited [14] so as to directly use the property of conservation of f
along characteristics and avoiding completely the time integration of the df equation but the information for f
is known on a randomly chosen points that move in time. Therefore, in the semi-Lagrangian method, there is
no constraint on the computation time related to the condition Jf < f. However, a difficulty is faced in the
numerics, namely the occurrence of negative values of the distribution function. Negative values may appear
in regions of the phase space where the equilibrium distribution function is small when strong resonant inter-
actions occur between waves and particles. This is due to the limitations in the interpolation procedures. This
difficulty can be overcome by increasing the number of grid points and/or by changing the interpolation pro-
cedure [28]. Another numerical issue is energy conservation. An exact law of energy conservation can be built
from the set of gyrokinetic equations. However this property of energy conservation is not always fulfilled dur-
ing the simulations (unless implemented in the numerics). It will be shown here that SL method ensures good
conservation properties if small scales are filtered.

The remainder of this paper is organized as follows. The physical model is described in Section 2. The
numerical method is addressed in Section 3. The parallelization of the code is developed in Section 4. The
numerical results are presented in Section 5 and improved schemes are analyzed in Section 6. Finally, a sum-
mary is given in Section 7.

2. Physical model
2.1. A drift-kinetic system in cylindrical geometry

The code presented in this paper is applied to a cylinder geometry with a reduction of the phase space to
4D. The goal of this work is to investigate turbulent transport in 5D in a realistic tokamak geometry together
with the relevant physics of low frequency turbulent activity. A family of codes has been developed with
increasing dimensionality 2D, 3D and 4D to assess the numerics that will be the backbone of the full 5D code.
In the 4D version, a periodic cylindrical plasma of radius ¢ and length 2nR is considered as a limit case of a
stretched torus. The plasma is confined by a strong magnetic field which is uniform B = Bé. where &. stand for
the unit vector in the toroidal direction z. In this collisionless plasma the electrons are assumed to respond
adiabatically to the low frequency fluctuations. Concerning the ions, finite Larmor radius effects are neglected
so that the trajectories are governed by the guiding-center (GC) trajectories

dr do dz

. q
4 - veci g =vec g = o= -k W

m

where vgc, and vge, are the radial and poloidal components of the £ x B drift velocity tgc = (E X 1§) /B> E
being the electric field, ¢ = Ze the ion charge and m; the ion mass. v corresponds to the velocity along the
magnetic field lines. Finally, it is assumed that fluctuations of the magnetic field are negligible. Thus the elec-
trostatic approximation is used to compute the electric field, i.e., E = —V®, where the scalar @ represents the
electric potential. This simplified cylinder configuration does not take into account the toroidal effects but
allows one to study slab ion temperature gradients driven modes (ITG). Given these assumptions, the distribu-
tion function f'is a 4D phase space function that depends on the three cylindrical coordinates (r,0,z) and on
the parallel velocity vy. The evolution of this distribution function f{r, 0, z, v, ) is described by the drift-kinetic
Vlasov equation

of . & of . of
. =0 2
or TPoc Vil tiig T, @)
where V, = (&,1 %), This equation couples the E x B motion across the magnetic field to the motion parallel

to the magnetic field. Self-consistency is ensured by the quasi-neutrality equation that relates the electric po-
tential @ to the first moment of the distribution function. Upon linearization, the quasi-neutrality reads

(@ — (@) = nmi—no 3)

eny(r)
Te(r)

no(r)
BQ,

VL-[ VL¢]+
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where Qo = ¢;Bo/m; is the ion cyclotron frequency, and T, and n, are, respectively, the electron temperature
and density profiles. The ion density profile is given by ni(r,0,z,t) = Jdv‘u‘(r, 0,z,v),1) and (-) represents the
average on the magnetic field lines ((-) = (1/L.)|- dz with L. the cylinder length). The first term on the left hand
side corresponds to the linearized polarization term. The second term comes from the adiabatic response of
the electrons. The expression (@ — (®)) is due to the fact that the electron density fluctuations vanish for zonal
modes [29].

2.2. Boundary and initial conditions

The distribution function is periodic in the 0 and z directions, i.e.,
f(,0,z,0) = f(r,04+2m,z,0)) VO and f(r,0,z,v)) = f(r,0,z+ L.,v)) Vz

Besides, we assume that there is no perturbation at the boundary in the non-periodic directions (r and v)). In
the absence of buffer regions at the edge such boundary conditions prevent very long simulation times when
the turbulence spreads till the center [30]. The plasma can be initialized by exciting a single ITG mode (m,n)
(where m is a poloidal mode and # a toroidal mode) or by exciting a set of ITG modes with random amplitudes
and phases. The distribution function is thus considered at the initial time as the sum of an equilibrium and a
perturbated part: = f., + Jf. The equilibrium part fq is chosen as a local Maxwellian

1 (o B L A
Jalrs ) = e o = ( 2Ti(r)> @
while the perturbation Jf is determined as

of = Jea8(r)h(v))op(z,0) (3)

where g(r) and h(v)) are exponential functions such that g(r = ryin) ~ g(r = rmax) ~ 0 and A(v] = Vjmin) ~
h(v) = Vjmax) ~ 0. The perturbation Jdp can be initialized with a cosine function with a single poloidal mode
m and a single toroidal mode n as

27n

op(z,0) = ecos ( 7

z+m0)

¥4

or with a bath of modes

op(z,0) = Z €mn COS (22:112 + m0 + (bmn)

'z

m,n

where ¢,,, and ¢,,, represent, respectively, a random amplitude and a random phase for the mode (m,n). The
radial profiles of the ion and electron temperature (respectively, 7Tj(r) and T,(r)), as well as the radial density
profile ny(r), are fixed in time and deduced by numerical integration of their gradient profiles given by the three
parameters x, Ar and r,. For example,

1 dTi(V)
Ti(r) dr

r—r,

- _ -2 4
= —ir,cosh <Arri>

2.3. Energy conservation law

The kinetic energy, in fact the variation of the kinetic energy with respect to the equilibrium kinetic energy,
is defined as

2
v
Otkin = /miEH(f — feq)dVdyy  with dV = rdrdfdz (6)

Qdepot

== = 0 is given by (cf. Appen-

Then according to Egs. (2) and (3), the potential energy which satisfies aoas% +
dix A for more details)
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2

A challenge for non-linear codes is the conservation of the total energy deior = dekin T 06por = constant, a ma-
jor property of the Vlasov equation. Errors in the energy conservation is used here as a measure of the code
accuracy.

Sepor = 1 /(ni — no)®dV (7)

3. Numerical method
3.1. Discretization of the quasi-neutrality equation

The discretization of the quasi-neutrality equation (3) is performed by projecting in Fourier space along the
two periodic directions (6 and z) and by using finite differences in the radial direction. Indeed, let @ and »; be
represented in terms of the Fourier expansion as:

&(r,0,z) =5 > ™" (r) exp(im0) exp(inz)
ni(r,0,z) = Zm: zn:nim‘" (r) exp(im@) exp(inz)

then Eq. (3) is rewritten in the wave number representation, for each poloidal and toroidal mode (m and n), as
the following differential equation:
o*d"" (r) {1 N 1 dno(r)} oP™"(r) 2 Qoe

02 5 TR0+ 0 [@""(r) — @"(r)] =

Qy
no(r)

[ (r) = no(r)]
(8)

It should be noticed that the (m,n) = (0,0) mode is included in the simulation, thus allowing for the generation
of zonal flows. To avoid the difficulties raised by the divergence of % for r — 0, the problem is solved within a
1ing rmin < 7 < @, With rmin = 107>, The boundary conditions are Dirichlet conditions on the axis (®""(rmin)
=0 for all m and n). Although such a condition looks somewhat artificial for the equilibrium mode
(m,n) = (0,0) (one should rather expect & &(rpin) = 0, i.e., no poloidal rotation), it does not impact the numer-
ical results we wish to emphasize in this paper. The plasma is considered like a conductor on the outer bound-
ary, i.e., E:g =0, which means in Fourier space: im®""(a) =0 and in®""(a)=0. So if m#0 or n#0,
&™"(a) = 0 and ¢"(a) is assumed equal to 0 too. Let N, be the number of radial points. Given the boundary
conditions afore mentioned and up to the second order in Ar, Eq. (8) leads to the tridiagonal
(N, —2) X (N, — 2) system

roong(r) dr

m.n m,n m.n
b, ¢ 0 Py py" — an®,
m,n m,n
Ary brz Crs 0 ¢3 P3
m,n m,n
0 a"v,J brNy—Z c"N,—Z ¢N,—2 pN,—Z
m,n m,n m,n
0 ary,_ by Dy PN.—1 = Cry, P,

with

ay, = — (ﬁ - 2&?) where O((l”i) =1 + 1 duolr)

b, ==+ ””—22 + (1 = 8,-0) 72 with & the Kronecker symbol

Te(ri)
I O W)
Cr = (Ar2 + 2Ar)
m,n 1

P = iy (5 (ri) = mo(r2))

This tridiagonal system is solved by using a LU decomposition [31,32]. The projections in Fourier space are
performed by FFT.
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3.2. Solution of the Viasov equation

3.2.1. Time-splitting

In this uniform field case, the Liouville theorem is verified, i.e., V| - Tge + oL + 2 —

+
0z aLH
acterizes the incompressibility of the gyro-center orbits. With this property the Vlasov equation (2) can be
written in its conservative form

0 0
T4V Foch) + o (0f) +

= 0. This property char-

(qu )=0
Ay
Therefore this equation can be solved (cf. proof in Ref. [33]) by splitting between space and velocity coordi-
nates into three conservative equations:

of

a—t+VL (UGCf):O

of  A(vf)
o + Oz
of | o(dyf)
E + aUH

=0
=0

All the Eulerian methods based on finite volume methods work on conservative form of equations whlle using
a semi-Lagrangian method requires to work directly on advection equations. Since V - ge =0, ” =0 and
az:: = Oathe previous system is equivalent to:

f

a‘—+§GC‘V1f:O (9)

of  of
2 +u = s =0 (10)
af . of

DR =0 (11)

So as to solve these three advection equations the following numerical scheme is adopted. Let 70 denotes the
shift operator in (r, 0) direction over a time step Az, associated to the advection term in Eq. (9). Similarly, z and
v denote the shift operators, respectively, in the z (Eq. (10)) and v directions (Eq. (11)). A splitting of Strang
[34] is applied to keep a scheme of second order accuracy (cf. proof in Appendix B). Second order accuracy is
obtained by imposing a symmetry in the application of the different shifts. In our case the most efficient se-
quence is (9/2,2/2, 02, 12)/2 2/2,0/2) (where factor 1/2 corresponds to a shift over a Az/2) because with
this sequence the two (r, 0) shifts in 2D can be connected. So that the algorithm time step can be summarized
by (9/2,2/2, r0 ,2/2,0)/2 ,0), where O denotes symbolically that at this point the quasi-neutrality equation is
solved to compute the electric potential and thereby the electric field. The shifts in the z and v directions are
straightforward, but the one in the (r, 0) direction requires more attention. Indeed, if we consider the action of
the 0 operator between times ¢ — At and ¢ + Az, the value of the electric field E at time 7 is required to keep a
time scheme of second order. This value is calculated by using a leap-frog method, which involves the use of
two distribution functions shifted in time by one time step.

3.2.2. Semi-Lagrangian concept

Let'bea position vector in the phase space such that I'= (r,0,z,v)) and let Iibea position vector which
corresponds to a node of the mesh. The semi-Lagrangian method is based on the invariance of the distribution
function f along its characteristics Eq. (1) because,

- of drdf  d010f dz0f dv df of of . of
G 0
ar T = Y v o0 T i oe T by o e VI g g =

according to the Vlasov equation (2). Therefore, the distribution function can be computed at each time step
on the same fixed grid, by using
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.y 4
X ode kﬂ%‘}
Vlasov equation < > - t+AL
v
f constant along the
trajectories
v
X, g+ AL) = F(X5,1) )
ode ) Y ;;(:) . .
- - ~ |
z N S N t
cubic spline interpolation S
f known on the mesh

Fig. 1. Semi-Lagrangian basic concept.

F(Ti(ty + AL), 1y + A1) = f(T(t,, Ti 1, + A1), 1)

where I’ (24, ity + At) represents the solution of the characteristic at time step ¢, is equal to I'; at time 7, + At.
The method consists first in finding the foot of the characteristic at the time 7,; I (ta, I it + At). The second
step is to compute f (f (ts, Ity + At),t,) by interpolation, because at this time, the distribution function is
known over the whole fixed grid. This scheme is summarized in Fig. 1.

This sequence of operations can be applied separately on each advection equation appearing in the
time-splitting algorithm. The computation of the foot of the characteristic for the 1D equations in the z
and v directions are trivial agnlike that fog the 2D equation in (r, ). This 2D equation cannot be divided into

G

two 1D equations because ~2< # 0 and —;= # 0.

3.2.3. Discretization of the (r,0) motion equation
The 2D characteristic equation in the (r,0) cross-section is performed in Cartesian coordinates to improve
the numerical stability close to the axis. So computing the 2D trajectories is equivalent to solving the two
following differential equations at first order:
dx

y
— = Ugc, and —_— = Uch

de dt

where vge, = E.(x,y,2)/B. and vgc, = E,(x,y,z)/B. represent the components of the £ X B drift velocity in
Cartesian coordinates. This system

=

dx

dr
is solved by using the parabolic assumption developed in [26]. Let X ;; be the position of X (t, + Ar) at time
t, + At, then there exists a displacement d;; tangent to the parabola such that (see Fig. 2)

X(ta) =X;—dy
)_('(l‘n - At) :)?lj - 26_2,j

== 6GCX(1?323 t) (12)

Since the solution at second order of Eq. (12) can be written as

X, —X(t,—A) - -
%I) = UGCX(X(tn)7Zk7 tn)
where
. X(ty+ A0 +X(t, — At) Xy +X(t, — Ar)
X(t) = 2 = 2

the displacement c_i,-j can be calculated by solving the implicit equation

L_jij = Affgex (X — ‘_iijat") "
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2dij t- At

Fig. 2. Parabolic trajectory.

This implicit equation can be solved iteratively using a Newton-Raphson algorithm. Let the function g be de-
fined by g(d;;) = AtUGCX( d,,,t ), then the Newton iterate is given by

Tm+1l __ Tm — m m
dij+ = dij - Jg (dij)g(dij) (14)

where J, is the Jacobian matrix of g. So if we denote (a;, ;) the coordinates of ;1,:, at the mesh knot (r;, 0, zi, v))
then assuming that dgcy is linear in each grid cell, the Newton iterate yields:

1 m
OC;;'H = alr,;'. — Z [(OC:;’ — AtUGCx)(l + AtayUch) — (ﬂij - AthCy)(AtayUGCX)]

1
Bt =B+~ (e = Atvge, ) (Atdwvoc, ) — (B — Atvge, )(1 + Ardvce, )]

where 4 corresponds to the determinant of J,. This algorithm gives a good description of the trajectories.
Fig. 3 shows the trajectories of 3 test-particles in a constant electric potential @(r,#), which follow the isopo-
tential as predicted by the theory with a relative error of 0.1%.

The drawback of this method is that it requires the interpolation of wvgc, (x; — oy — ﬂlj,zk) and
vae, (xi — oy, — Bi;zx). An another possibility to avoid this interpolation, performed with cubic splines, is
to use a Taylor e;gpansmn The first idea is to write Eq. (13) under the explicit form al’”+1 Afbgex
(Xyy —d},t,). So if d)) is initialized at 0, then:

ij

electric potential ( (g Te0)¢ )
T ——

poloidal direction / Ps

&

8

4 6
radial direction / Ps

Fig. 3. Closed trajectories of 3 test-particles in a time-independent electric potential ®(r, 0) for Az = 0.5/Q, and 50,000 iterations. The cross
and the circle represent, respectively, the beginning and the end of the trajectories.
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d —AthCX( d?,, n) = All—fccx()?ij’fn)
d = AtBoex (X d,l,, 2) = Atlgex (X — AtBaex (Xij, 1), 1)
= AtBoex (X 1) — ALT (X )a’l + O((At)’) (Taylor expansion at first order)

then 312, = AtBocx (Xij, 1) — AT (X ;) Boex (X, 1), where J,(X;) is the Jacobian matrix

dvge, (Xip)  dvae, (Vy)
ox oy
dvge, Xy)  duge, (Xiy)
ox Oy
This simpler method is equivalent at second order to the Newton algorlthm Indeed, if J ;1(d )=
I+ AtJs,., (X, —dy,1,)]"" is expanded at second order asJ,' (dy) =1 — AtJs. (X — dyj 1,) + O((A1)*), then

according to Eq (14)

A1t = Aoy (X — di), 1) + AT s (X — dit, 1,)d0) — AP T, (X — i t)Boex (X — 1) + O((A)°)
so if dl jaylor = d?j newton = 0 then d, taylor = d,], sewton 1 he advantage of this Taylor method is that it requires the

computation of the derivatives at first order of gcy on nodes of the mesh and not on arbitrary points of space.

3.2.4. Cubic spline interpolation
When the characteristic foot is computed with the Taylor method, we need to compute f{r*, 0*, z, Ojs I

At) where r* = \/ (x; — ozij)z + (v — By ) and 0* = drctan(y it ”) are no longer grid points. Thus an interpola-
tion is needed. In this case, a 2D interpolation (r, 0) is requlred where z; and v); are considered as parameters.
For the resolution of Egs. (10) and (11), 1D interpolations in the z direction (respectively, v direction) are
required with r;, 0; and vy (respectively, r;, 0; and z;) fixed. So according to the advections, the 4D distribution
function is interpolated on a 1D or 2D cubic spline basis. Let N,, Ny, N, and N, be the number of points,
respectively, in r, 0, z and v directions. Then, for instance in the z advection, f{(r; 0, z,v)) is approximated by
No+1
81(2) = f(ri Opz,00) = Y eu(z) Vi, 0,0y
v=—1
where A are piecewise cubic polynomials (cf. [35]). In the case of an advection in (r,0), fis defined as a 2D
tensor product of cubic B-splines, as

Ny+1 Ng+l

g2(r,0) = f(r,0,z0,00) = Y Y CapAa(r)Ap(0) Vi, vy

a=—1 p=1

The piecewise cubic polynomials A are twice continuously differentiable. For more details on the computation
of the cubic spline coefficients see Appendix C.

3.3. Global algorithm

Taking into account all the previous steps, the global algorithm in time used to solve the 4D non-linear
system (4D Vlasov equation + 3D quasi-neutrality equation) is summarized by the following sequence. Let
the notations n — 1 and n + 1, respectively, correspond to the time ¢, — At and ¢, + Atz. Given the distribution
function at two times ¢t =1¢,_; and ¢ = ¢, then:

1. Computation of E(¢,) with f{¢,) by solving the quasi-neutrality equation.

2. Computation of f"™' =f1,+ Ar) with /"' =f(t, — Ar) by using the centered electric field E(z,). This
means using an algorithm of time-splitting on 2A¢ according to the sequences 922(r, 0)zi|, i.e.:
(a) f*(r,0,z,0)=f"(r,0,z,0)— AtE1,)),
(b) f**(r,0,z, o)) =f*r,0,z— Aty vy),
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(c) f:'**(r_z 0,z,0)) =f**r— 205, 0 — 25, z,v) with ﬁij = (ay, ﬁ,-j)t where the implicit equation EiU = At¥gcey
(X;; — dyj,t,) is solved by a Newton algorithm or by a Taylor method,
(d) £, 0,z,0) = f***(r,0,2— At,v)),
(©) /" =, 0,2,0 — ALEL(1,)).
3. Leap-frog algorithm:
(a) f(t,—1) becomes equal to f{t,),
(b) f(z,) becomes equal to f{z,+1).

4. Parallel 4D code description

The 4D code is developed in Fortran 90 and parallelized with the MPI message passing library. It runs on
SUN and ALPHA parallel computers as well as on PC cluster under Linux. At the moment only the 4D dis-
tribution function and Eq. (2) are parallelized. The discretization and the solution of the 3D quasi-neutrality
equation is performed on each processor. As mentioned before the 4D Vlasov equation is solved by time-
splitting. Hence the 4D discretization is replaced by a succession of discretizations of 2D advections in the
(r,0) direction and 1D advections in the z and v directions. To take advantage of this property, the 4D dis-
tribution function is saved in a 2D array where the first dimension corresponds to the directions (r, ) and the
second dimension corresponds to the 2 others directions (z,v)). At each time, this 2D array is shared on pro-
cessors according to the first or second dimension depending on the advection that is performed. Indeed, to
resolve the 2D advection, each processor needs to know all the information on (r, 8). Therefore the 2D array is
parallelized according to the second dimension. On the other hand, to solve the two 1D advections, each pro-
cessor needs to know all the information on z or . So the 2D array must be transposed to be parallelized
according to the first dimension. The advantage of this kind of parallelization is that the only communication
between processors appears during the transposition of the 2D array and all the operations are fully local. The
transposition is optimized for a number of processors which is a power of 2.

4.1. Speed-up

The performance of the parallel code is summarized in Table 1 for two different typical mesh sizes in
(r,0,z,v)): (64x 128 x 64 x 64) and (128 x 64 x 64 x 128). All the tests have been performed on the parallel
computer of the CEA (Commissariat a I’Energie Atomique) made of 180 quadri-processors. Each processor
is an ALPHA EV68-1250 MHz with a power of 2.5 GFlops/s and a memory size of 1 GBytes.

As seen in Fig. 4, the speed-up (speed-up = monoprocessor time/CPU time) is poor for more than 64
processors. This is due to the fact that the computational time of the not parallelized 3D operations become
non-negligible. The performance of the code will be improved in the future by parallelizing the resolution of
the 3D quasi-neutrality equation.

5. Numerical results

The cylinder ITG instabilities correspond to small scale instabilities, which grow and saturate to a state of
developed turbulence. In the following, the exponential increase of the amplitude of the initial perturbation
will be called the linear phase. Due to the existence of energy invariants (like the number of particles for
instance) and the self-consistent evolution, these perturbed modes cannot grow unbounded and a saturation

Table 1

CPU time in seconds for 1 global iteration for 2 different meshes: meshl = (64 x 128 x 64 x 64) and mesh2 = (128 x 64 x 64 x 128)

Nb processors 1 2 4 8 16 32 64 128 256
Meshl 309 155 85 50 30 21 16 15 14
Mesh2 X 313 167 94 52 31 21 17 16

The cross-symbol corresponds to a problem of insufficient virtual memory.
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Fig. 4. Speed-up for two different meshes (64 x 128 x 64 x 64) and (128 x 64 x 64 x 128).

is reached. We will see that the GYSELA code is well adapted to compute this non-linear phase, which is obvi-
ously the most demanding and relevant part of the simulation.

5.1. Normalization

The numerical solution is performed using the normalized equations. In our case, the temperature is
normalized to T,o, where T is defined such that T.(rg)/Teo = 1 (where ry is a reference point). The time is
normalized to € ! where Qq = ¢;By/m; is the ion cyclotron frequency. The velocity is normalized to the sound

speed ¢, = \/Te/m; and the normalization of the electric potential is defined by T.o/g;. Therefore, all the nor-
malized quantities needed (represented with hat symbol) can be deduced and are summarized in Table 2.

5.2. Linear study

5.2.1. Computation of the growth rate and the instability threshold

The linearized Vlasov equation is obtained by separating the equilibrium distribution function from its per-
turbation in the Vlasov equation (2) and by keeping only the perturbations at first order. In this linear study,
the equilibrium part f.q is given by Eq. (4) and the perturbations are projected on a Fourier basis in ¢ and z
directions as:

8 = 8fma(r, v)) expli(m0 + nz — wi)]

mnw

B =" Dy (r) expli(m0 + nz — )]

mnw

According to these assumptions the linearized Vlasov equation is

on; w— o q ) 1
mo 1 — i b ) h{)=— fe
1o ( <w - kv>> Ti(r) ™ with () no / Jea oy

where the diamagnetic frequency w; is given by

Table 2

Normalized quantities

1= Qot Z\: (QO/CS)I = l/ps
b=v/cs E = (1/cBy)E
T=17/Tq - = (p)’n

b= (q;/Te0)® I=)ef

B =B/B,
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The Fourier wave numbers ky and kj are, respectively, defined as ky = m/r and kj = 2nn/L.. Let us remain here
that we only consider particles with g = 0. In this case, the velocity space has one degree of freedom, hence
leading to the coefficient 1/2 (instead of the usual 3/2 value) in the definition of w;.

The linearized quasi-neutrality equation is then

O*Dper (1) 1 1 dng(r)\ 0P (r) m* 1 T. onm,, (r)
2 mnw - mnw o (pmnm _ ‘e Imna
,05[ or? + (r +n0(r) dr ) or ] + <,05 r? +Zi> (r) eZ; ny(r)

Instead of solving the full differential equation, we use a test function of the form @,,,.,(r) = ¢,muexple(r)],
then the previous equation can be written as

2 .
2 (k) + 2 4 1 ) = 1= 2l

Zi n eZi no(?’)
where k(r) is defined by

o[ () - (a5 )]

For the linear stability analysis, exp{g(r)} is chosen such that the profile of @ is close to the numerical solution.
Finally, the linearized dispersion relation can be deduced from the two previous relations

D(w):pf(lc(r)—l—lf—;) +Zii+ (1—<ww_7kal)gl>>%:0 (15)

This local dispersion relation gives for each mode a relation between the real part of the frequency (temporal
periodicity) and the wave number (spatial periodicity). This phase velocity characterizes the kind of waves that
propagate in the plasma. The behavior of the linear growth rate y (imaginary part of w), with the Fourier wave
number m and n, is given by the zeros of the linear dispersion relation D(w) =0 where o = w, + 1y and o,
is the real part of the frequency. The instability threshold corresponds to the case Im(w) =y =0. lim,_+
D(w) = 0 is equivalent to the system of equations:

w, — W'
b= 1+ A pp<<7>) 0
wr — kv
2
A L
Si=ﬁ<<wr—a)ni—wﬂ[v—%—§ O —kyvy) ) =0

with vy, = \/Ti/m; the thermal velocity, where PP denotes the principal part and where

m? T
A(r) = tp2 =) +=
(r) = p; (K(r) + r2) + Z
Thus using the relation

lim L _ PP (1) F ino(x)
x

y—0" X + 1'])

The relation between the ion temperature gradient and the density gradient is given by the following analytical
expression:
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wp = o, :I:\/w*2+2wrr+A( 7)) (16)

where o = kHvT The dependence of w7, on w;, at the threshold is shown in Fig. 5. The distance to the thresh-
old of the pair (7., ;) for our numerical simulation is also shown in Fig. 5. In the limit w; > ), the thresh-
old is n = vy /v ~2
According to Eq (15) D(w) is defined by
2

D) =2 (k) + ™) 4 L] f 1 —zz |1 4 ey O (L 2 (17)
w) = 1| p;| k(r) + 3 Z zZ(z s o 2720 z
with t = Ty/T,, z = \/» and where Z(z) represents the Fried and Conte function [36], i

o exp(—x?)
f / xX—z
The local dispersion relation (17) is solved for r = rpe,i and the zeros are found using a Davies method [37,38]
coupled to a Newton algorithm. This spectral approach, which is clearly less time consuming than a global
non-linear simulation, is currently used for microinstabilities analysis (code KINEZERO [39]). In our case this
preliminary study is performed to check the validity of the physical input parameters. The results for a stan-
dard case are presented here. This numerical case corresponds to a 4D phase space (r,0,z,v)) defined by the
following lengths: L, =14.5p,, Ly=2mn, L.=1508p, and v € [—6vr,,6vr,]. The electron temperature is
assumed uniform. The dens